2037

B. Tech. (ECE)/M.B.A. Tech. (ECE) EXAMINATION, Dec. 2023

(Seventh Semester)

DIGITAL IMAGE AND VIDEO PROCESSING ECL-472-C

Time: 3 Hours Maximum Marks: 80

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

- 1. (i) What is Tapered Quantization?
 - (ii) List the hardware-oriented color models.
 - (iii) Give the formulas for calculating D4 and D8 distance.
 - (vi) Specify the properties of Fourier transform.
 - (v) What are the basic steps in JPEG?
 - (vi) Write the applications of segmentation.
 - (vii) What is Resolution?
 - (viii) Define Region Growing.

(5-11-19-1023) P-2037

P.T.O.

Unit I

- **2.** With the help of a suitable diagram, briefly explain the different elements of visual perception.
- **3.** What do you mean by histogram and histogram equalization? With the help of suitable example, briefly explain that how histogram equalization is used for smoothing the image.

Unit II

- **4.** What is Image Smoothing? How is it achieved using frequency domain filters? Describe the process using ideal Butterworth filters.
- **5.** What is DFT? Differentiate between 1-D and 2-D Discrete Fourier Transforms with suitable examples.

Unit III

- **6.** Describe Wavelet transform and explain, how Fast Wavelet transform is different from normal Wavelet series expansion.
- 7. What is Segmentation? How global and adaptive techniques are used for image segmentation and which technique gives better results in image segmentation and why? Justify your answer.

2

Unit IV

- **8.** Explain Compression. How can one achieve compression without loss of information in case of digital images?
- **9.** Write short notes on the following:
 - i) JPEG-2000
 - (ii) DCT.

3

2028

B. Tech. (ECE)/M.B.A. Tech. (ECE) EXAMINATION, Dec. 2023

(Fifth Semester)

MICROWAVE ENGINEERING

ECL-353

Time: 3 Hours Maximum Marks: 80

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

- 1. (i) Discuss standard frequency bands.
 - (ii) Discuss the role of cavity resonators.
 - (iii) Discuss the use of strip lines.
 - (iv) What is VSWR?
 - (v) Discuss the behaviour of circuits at conventional and microwave frequencies.
 - (vi) Define TEM mode in rectangular waveguide.
 - (vii) Discuss various microstrip circuits.
 - (viii) Discuss the method used for measurement of unknown loads. 8×2=16

Unit I

- 2. (a) Discuss the limitations of conventional tubes.
 - (b) Discuss about the construction, operation and characteristics of two-cavity klystron amplifier. 12
- 3. Discuss the construction, operation and performance characteristics of the following: $2\times8=16$
 - (a) TWT
 - (b) CF amplifier.

Unit II

- 4. (a) Derive an expression for propagation of TM wave in rectangular waveguide.
 - (b) Discuss the comparison of microwave components with transmission lines.
- 5. (a) Discuss various types of waveguide tees. Derive the scattering matrix for H-plane Tee.8
 - (b) Write a note on circulator and isolators. 8

Unit III

6. Discuss the working principle and construction of varacter diode and tunnel diode along with applications.16

2

7. Write notes on the following:

 $2 \times 8 = 16$

- (a) TRAPATT diode
- (b) Parametric amplifier.

Unit IV

- 8. (a) Give a brief description of Microwave benchdifferent blocks and their features. 10
 - (b) Discuss the methods used for measurement of reflection coefficient.6
- (a) Discuss various methods used for power measurement.
 - (b) Discuss the process of measurement of frequency and wavelength. 6

3

100

(b) Find the Fourier transform of signal:

$$x(t) = e^{-at}u(t). ag{6}$$

(c) Define mathematically Fourier transform and list its various properties.6

Unit III

- 6. (a) Explain the significance and properties of Region of Convergence in Z Transform.5
 - (b) Determine the z-transform of the signal:

$$x(n) = a^n u(n). 5$$

(c) Determine the inverse of z-transform:

$$x(z) = \frac{z^{-1}}{\left(1 - z^{-1}\right)\left(1 - \frac{1}{2}z^{-1}\right)} \text{ ROC} : |z| > 1.$$

Or

Explain, how the analysis of discrete time invariant system can be obtained using convolution properties of Z-transform.

- 7. (a) Discuss the properties of Region of Convergence of Laplace Transform. Also explain the usage of Laplace Transform in analysis of system.
 - (b) Define pole and zeros of system function. 4

4

2017

B. Tech. (ECE)/M.B.A. Tech. (ECE) EXAMINATION, Dec. 2023

(Third Semester)
SIGNAL AND SYSTEMS
ECL-233

Time: 3 Hours Maximum Marks: 80

Note: Attempt *Five* questions in all. Q. No. 1 is compulsory and contains eight subparts each of 2 marks. Attempt any other *four* questions, selecting *one* question from each Unit. All questions carry equal marks.

- (i) Define step signal with its mathematical or graphical representation.
 - (ii) Define the term causality as referred to continuous time system. Also conclude whether system described by the equation y(t) = 3x(-t) 7x(t-2) is casual or not.
 - (iii) Distinguish between Finite Impulse Response and Infinite Impulse Response system. 2
 - (iv) Write the trigonometric form of the Fourier series representation of periodic signal. 2

	(vi)	Define mathematically Laplace Transform. Also
		justify its significance in analysis of system. 2
	(vii)	Which among the following plays a crucial role in
		determining the state of dynamic system ? 2
		(a) State variables
		(b) State vector
		(c) State space
		(d) State scalar.
	(viii)	State space analysis is applicable even if the initial
		conditions are 2
		(a) Zero
		(b) Non-zero
		(c) Equal
		(d) Not equal.
		TI:4 T
		Unit I
2.	(a)	Describe the classification of continuous and discrete
		time signals with example. 8
	(b)	Draw the graphical representational signal: 4
		(i) $x(n) = u(n-3)$
		(ii) $x(n) = \delta(n) + 2\delta(n-1) + 4\delta(n-2)$.
P-2017		2

Define bilateral

mathematically.

and unilateral Z-transform

2

- Define any two continuous time signal with mathematical or graphical representation: 4 Ramp signal
 - Pulse signal
 - Impulse signal.
- Discuss the properties of continuous or discrete 3. (a) time system with example. 10
 - Explain the following transformation on signal with mathematical or graphical representation: 6
 - Time Reversal
 - Time Scaling
 - Time Shifting. (iii)

Unit II

- Explain the analysis of continuous or discrete time Linear Time Invariant system. 10
 - What are different interconnections of LTI system? Also determine the overall response of two cascaded and parallel Linear Time Invariant systems having impulse response $h_1(t)$ and $h_2(t)$. 6
- Define the exponential form of the Fourier series 5. (a) representation of periodic signal.

Or

Or

Sketch the pole zero plot of a system having transfe

$$H(s) = \frac{s-2}{s^2+6s+8}$$
.

(c) Find the Laplace transform of unit step signal x(t) = u(t).

Unit IV

- 8. (a) Describe the properties of state transition matrix. 8
 - (b) Write the general form of state variable matrix. 8
- 9. (a) Discuss the solution of state equation for discrete time LTI System.8
 - (b) Define any two of the following:
 - (i) State variable
 - (ii) Eigen vectors
 - (iii) State of a system.

Sketch the pole zero plot of a system having transfe $H(s) = \frac{s-2}{s^2 + 6s + 8}.$

(c) Find the Laplace transform of unit step signal x(t) = u(t).

Unit IV

- 8. (a) Describe the properties of state transition matrix. 8
 - (b) Write the general form of state variable matrix. 8
- 9. (a) Discuss the solution of state equation for discrete time LTI System.8
 - (b) Define any two of the following:

5

- (i) State variable
- (ii) Eigen vectors
- (iii) State of a system.